Algebra 1 Master Review

SOL 2023 Comprehensive Study Guide

Unit 1: Expressions & Operations
  • Variable: A letter representing a number.
    Ex: In $3x + 5$, the variable is x.
  • Coefficient: The number multiplied in front of a variable.
    Ex: In $\mathbf{5}x - 2$, the coefficient is 5.
  • Constant: A number by itself (no variable).
    Ex: In $2x + \mathbf{7}$, the constant is 7.
  • Leading Coefficient: The coefficient of the term with the highest exponent.
    Ex: $7 - 2x + 5x^3$. Highest power is 3. Leading Coeff is 5.
  • Substitution: Plugging a number in for a variable.
    Ex: Evaluate $3x + 2$ when $x=4$.
    $3(4) + 2 = 12 + 2 =$ 14.

➕ Addition (Sum)

  • Increased by
  • More than
  • Combined / Total
  • Plus

➖ Subtraction (Difference)

  • Decreased by
  • Minus
  • Less than (FLIP)
  • Subtracted from (FLIP)

✖️ Multiplication (Product)

  • Times / Of
  • Twice ($\times 2$)
  • Per / Each
  • Squared ($x^2$)

➗ Division (Quotient)

  • Ratio of
  • Split into
  • Half ($\div 2$)
  • Average

1️⃣ THE PARENTHESIS RULE: Words like "Sum of" or "Difference of" signal grouping.

"Twice the sum of a number and 5" $\rightarrow$ 2(x + 5)

2️⃣ THE SWITCH RULE: "Less Than" and "Subtracted From" mean FLIP THE ORDER.

"5 less than x"
$\rightarrow$ $\mathbf{x - 5}$
  • Adding: Combine Like Terms only.
    $(2x + 5) + (3x - 2) \rightarrow (2x+3x) + (5-2) \rightarrow$ $5x + 3$
  • Subtracting: Distribute the Negative Sign to the second group, then Add.
    $(4x + 7) - (x - 3) \rightarrow 4x + 7 \mathbf{-x + 3} \rightarrow$ $3x + 10$
  • Multiplying (Distribute/FOIL): Multiply coefficients, ADD exponents.
    Ex: $3x(2x + 5) \rightarrow (3 \cdot 2)(x \cdot x) + (3 \cdot 5)(x) \rightarrow$ $6x^2 + 15x$
    Ex: $(x+2)(x+3) \rightarrow x^2 + 3x + 2x + 6 \rightarrow$ $x^2 + 5x + 6$
  • Dividing: Divide coefficients, SUBTRACT exponents.
    Ex: $\frac{12x^5}{4x^2} \rightarrow (12 \div 4)x^{(5-2)} \rightarrow$ $3x^3$
Perfect Squares
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225
Perfect Cubes
1, 8, 27, 64, 125, 216, 343
  • Zero Rule: Anything^0 = 1.
    $5^0 =$ 1
  • Negative Rule: Negative exponent? Flip the fraction.
    $x^{-4} \rightarrow$ $\frac{1}{x^4}$
  • Simplifying Radicals:
    Square Root: $\sqrt{75} = \sqrt{25 \cdot 3} \rightarrow$ $5\sqrt{3}$
    Cube Root: $\sqrt[3]{24} = \sqrt[3]{8 \cdot 3} \rightarrow$ $2\sqrt[3]{3}$

Desmos Shortcuts:

  • Square Root ($\sqrt{x}$): Type sqrt
  • Cube Root ($\sqrt[3]{x}$): Type cbrt
  • Exponent ($x^2$): Press Shift + 6
Unit 2: Equations & Inequalities
  • Multistep Strategy:
    Example: $3(x - 2) + 4 = 19$
    1. Distribute: $3x - 6 + 4 = 19$
    2. Combine: $3x - 2 = 19$
    3. Add 2: $3x = 21$
    4. Divide by 3: $x = 7$
  • Variables on Both Sides: Move smaller $x$ to larger $x$.
    Ex: $5x + 2 = 3x + 10$
    Subtract $3x$: $2x + 2 = 10 \rightarrow 2x = 8 \rightarrow$ $x = 4$
  • Literal Equations: Treat extra letters like numbers.
    Ex: Solve $A = lw$ for $w$ $\rightarrow$ Divide by $l$ $\rightarrow$ $w = \frac{A}{l}$
  • THE GOLDEN RULE: Multiply/Divide by Negative $\rightarrow$ FLIP SYMBOL.
    $-2x > 10 \rightarrow$ Divide by -2 $\rightarrow$ $x < -5$
  • Visual Guide:
Symbol Circle Shading Visual
$<$ (Less) Open $\circ$ Left $\leftarrow$ $\leftarrow\circ$
$>$ (Greater) Open $\circ$ Right $\rightarrow$ $\circ\rightarrow$
$\le$ (Less/Eq) Closed $\bullet$ Left $\leftarrow$ $\leftarrow\bullet$
$\ge$ (Greater/Eq) Closed $\bullet$ Right $\rightarrow$ $\bullet\rightarrow$

Solve ANY equation or inequality visually:

  1. Type the Left Side in Line 1 ($y = 2x - 5$).
  2. Type the Right Side in Line 2 ($y = 15$).
  3. Find the intersection. The X-Coordinate is the answer.
Unit 3: Functions & Statistics
  • Definition: X cannot repeat. Each Input has exactly ONE Output.
  • Table Example:
    XY
    15
    28
    19
    X=1 repeats with different Y's.
    Answer: NOT A FUNCTION.
  • Vertical Line Test: If a vertical line touches the graph more than once, it fails.
  • Slope-Intercept Form: $y = mx + b$
    Ex: $y = -2x + 3 \rightarrow$ Slope $m=$ -2, Y-int $b=$ 3
  • Point-Slope Form: $y - y_1 = m(x - x_1)$
    Ex: $y - 4 = 3(x - 2) \rightarrow$ Slope $m=$ 3, Point is $(2, 4)$
  • Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$
    $(1, 3)$ and $(5, 11)$.
    $m = \frac{11 - 3}{5 - 1} = \frac{8}{4} =$ 2
  • HOY VUX (Special Lines):
    HOY: Horizontal line, 0 Slope, Equation is $\mathbf{Y} = \#$
    VUX: Vertical line, Undefined Slope, Equation is $\mathbf{X} = \#$
Unit 4: Systems of Equations
  • Visual Solution: The point $(x,y)$ where two lines CROSS.
  • Example:
    $y = 2x$ and $y = x + 1$
    Graph them. They cross at $(1, 2)$.
  • Types of Solutions:
    One SolutionNo SolutionInfinite Solutions
    Lines Cross Once
    $(x, y)$
    Parallel Lines
    Same Slope
    Different Y-int
    Same Line
    On top of each other
Unit 5: Factoring & Quadratics
  • 1. GCF (Greatest Common Factor): ALWAYS check this first!
    $4x^2 + 8x \rightarrow$ Pull out $4x \rightarrow$ $4x(x+2)$
  • 2. Difference of Squares: Two terms subtracted. Both perfect squares.
    $x^2 - 49 \rightarrow$ $(x+7)(x-7)$
  • 3. Trinomials ($x^2 + bx + c$): Multiplies to C, Adds to B.
    $x^2 + 7x + 12 \rightarrow$ (3 and 4) $\rightarrow$ $(x+3)(x+4)$
  • 4. Slip & Slide ($ax^2 + bx + c$): When number in front $>1$.
    $2x^2 + 7x + 3$
    1. Multiply $a \cdot c$ ($2 \cdot 3 = 6$): $x^2 + 7x + 6$
    2. Factor: $(x+6)(x+1)$
    3. Divide by $a$ (2): $(x + \frac{6}{2})(x + \frac{1}{2})$
    4. Simplify/Slide: $(x+3)(2x+1)$

Parent: $f(x)$

  • Vertical Shift ($+k$): Moves Up/Down.
    Ex: $x^2 + 3 \rightarrow$ Up 3
  • Horizontal Shift ($x-h$): Inside is Opposite!
    Ex: $(x-2)^2 \rightarrow$ Right 2.
    Ex: $(x+5)^2 \rightarrow$ Left 5.
  • Reflection ($-f(x)$): Negative in front flips it over X-axis.
  • Dilation ($a \cdot f(x)$):
    If $a > 1$ (e.g., $3x^2$): Stretch (Skinny)
    If $0 < a < 1$ (e.g., $0.5x^2$): Compression (Wide)
Unit 6: Statistics
  • Mean: The Average. Add all numbers and divide by how many there are.
  • Median: The Middle number. (Order least to greatest first).
  • Mode: The number that appears the most.
  • Range: The spread. Range = Max - Min.
  • IQR (Interquartile Range): Middle 50%. Formula: $Q3 - Q1$.
    Ex: $Q3 = 20, Q1 = 15$
    $\rightarrow IQR = 20 - 15 = $ 5.
  • Z-Score: Number of standard deviations a value is from the mean.
    Formula: $z = \frac{\text{Value} - \text{Mean}}{\text{Standard Deviation}}$
    Ex: Value=85, Mean=75, SD=5.
    $z = \frac{85-75}{5} = \frac{10}{5} =$ 2.
  • Correlation ($r$): How close dots are to a line.
    $r \approx 1$ or $-1$: Strong Correlation.
    $r \approx 0$: Weak/No Correlation.

Step 1: Add a Table ($+$) and type your points.

Step 2: Type the code for the shape that fits best:

  • Linear ($y=mx+b$): Type y1 ~ mx1 + b
  • Quadratic ($y=ax^2$): Type y1 ~ ax1^2 + bx1 + c
  • Exponential ($y=ab^x$): Type y1 ~ ab^x1 (Check "Log Mode")

Step 3: Look for $r^2$. The closer to 1, the better the fit.

Step 1: Type data as a list: L = [5, 8, 12, 15]

Step 2: Use these codes:

  • Mean (Average): mean(L)
  • Median (Middle): median(L)
  • Mode (Most): Find manually (look for repeats).
  • Range (Max - Min): max(L) - min(L)
  • Standard Deviation: stdev(L)
  • IQR ($Q3 - Q1$): Find Q1/Q3 using stats(L).