Algebra 1 Master Review
SOL 2023 Comprehensive Study Guide
Unit 1: Expressions & Operations
Basic Vocabulary
- Variable: A letter representing a number.
Ex: In $3x + 5$, the variable is x.
- Coefficient: The number multiplied in front of a variable.
Ex: In $\mathbf{5}x - 2$, the coefficient is 5.
- Constant: A number by itself (no variable).
Ex: In $2x + \mathbf{7}$, the constant is 7.
- Leading Coefficient: The coefficient of the term with the highest exponent.
Ex: $7 - 2x + 5x^3$. Highest power is 3. Leading Coeff is 5.
- Substitution: Plugging a number in for a variable.
Ex: Evaluate $3x + 2$ when $x=4$.
$3(4) + 2 = 12 + 2 =$ 14.
Translating Words to Math
➕ Addition (Sum)
- Increased by
- More than
- Combined / Total
- Plus
➖ Subtraction (Difference)
- Decreased by
- Minus
- Less than (FLIP)
- Subtracted from (FLIP)
✖️ Multiplication (Product)
- Times / Of
- Twice ($\times 2$)
- Per / Each
- Squared ($x^2$)
➗ Division (Quotient)
- Ratio of
- Split into
- Half ($\div 2$)
- Average
1️⃣ THE PARENTHESIS RULE: Words like "Sum of" or "Difference of" signal grouping.
"Twice the sum of a number and 5" $\rightarrow$ 2(x + 5)
2️⃣ THE SWITCH RULE: "Less Than" and "Subtracted From" mean FLIP THE ORDER.
"5 less than x"
$\rightarrow$ $\mathbf{x - 5}$
$\rightarrow$ $\mathbf{x - 5}$
Polynomial Operations
- Adding: Combine Like Terms only.
$(2x + 5) + (3x - 2) \rightarrow (2x+3x) + (5-2) \rightarrow$ $5x + 3$
- Subtracting: Distribute the Negative Sign to the second group, then Add.
$(4x + 7) - (x - 3) \rightarrow 4x + 7 \mathbf{-x + 3} \rightarrow$ $3x + 10$
- Multiplying (Distribute/FOIL): Multiply coefficients, ADD exponents.
Ex: $3x(2x + 5) \rightarrow (3 \cdot 2)(x \cdot x) + (3 \cdot 5)(x) \rightarrow$ $6x^2 + 15x$Ex: $(x+2)(x+3) \rightarrow x^2 + 3x + 2x + 6 \rightarrow$ $x^2 + 5x + 6$
- Dividing: Divide coefficients, SUBTRACT exponents.
Ex: $\frac{12x^5}{4x^2} \rightarrow (12 \div 4)x^{(5-2)} \rightarrow$ $3x^3$
Exponents & Radicals
Perfect Squares
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225
Perfect Cubes
1, 8, 27, 64, 125, 216, 343
- Zero Rule: Anything^0 = 1.
$5^0 =$ 1
- Negative Rule: Negative exponent? Flip the fraction.
$x^{-4} \rightarrow$ $\frac{1}{x^4}$
- Simplifying Radicals:
Square Root: $\sqrt{75} = \sqrt{25 \cdot 3} \rightarrow$ $5\sqrt{3}$
Cube Root: $\sqrt[3]{24} = \sqrt[3]{8 \cdot 3} \rightarrow$ $2\sqrt[3]{3}$
Desmos Shortcuts:
- Square Root ($\sqrt{x}$): Type sqrt
- Cube Root ($\sqrt[3]{x}$): Type cbrt
- Exponent ($x^2$): Press Shift + 6
Unit 2: Equations & Inequalities
Solving Equations
- Multistep Strategy:
Example: $3(x - 2) + 4 = 19$
1. Distribute: $3x - 6 + 4 = 19$
2. Combine: $3x - 2 = 19$
3. Add 2: $3x = 21$
4. Divide by 3: $x = 7$ - Variables on Both Sides: Move smaller $x$ to larger $x$.
Ex: $5x + 2 = 3x + 10$
Subtract $3x$: $2x + 2 = 10 \rightarrow 2x = 8 \rightarrow$ $x = 4$ - Literal Equations: Treat extra letters like numbers.
Ex: Solve $A = lw$ for $w$ $\rightarrow$ Divide by $l$ $\rightarrow$ $w = \frac{A}{l}$
Solving & Graphing Inequalities
- THE GOLDEN RULE: Multiply/Divide by Negative $\rightarrow$ FLIP SYMBOL.
$-2x > 10 \rightarrow$ Divide by -2 $\rightarrow$ $x < -5$
- Visual Guide:
| Symbol | Circle | Shading | Visual |
|---|---|---|---|
| $<$ (Less) | Open $\circ$ | Left $\leftarrow$ | $\leftarrow\circ$ |
| $>$ (Greater) | Open $\circ$ | Right $\rightarrow$ | $\circ\rightarrow$ |
| $\le$ (Less/Eq) | Closed $\bullet$ | Left $\leftarrow$ | $\leftarrow\bullet$ |
| $\ge$ (Greater/Eq) | Closed $\bullet$ | Right $\rightarrow$ | $\bullet\rightarrow$ |
Desmos Solving Trick
Solve ANY equation or inequality visually:
- Type the Left Side in Line 1 ($y = 2x - 5$).
- Type the Right Side in Line 2 ($y = 15$).
- Find the intersection. The X-Coordinate is the answer.
Unit 3: Functions & Statistics
Functions: Is it a Function?
- Definition: X cannot repeat. Each Input has exactly ONE Output.
- Table Example:
X Y 1 5 2 8 1 9 X=1 repeats with different Y's.
Answer: NOT A FUNCTION. - Vertical Line Test: If a vertical line touches the graph more than once, it fails.
Slope & Equations
- Slope-Intercept Form: $y = mx + b$
Ex: $y = -2x + 3 \rightarrow$ Slope $m=$ -2, Y-int $b=$ 3
- Point-Slope Form: $y - y_1 = m(x - x_1)$
Ex: $y - 4 = 3(x - 2) \rightarrow$ Slope $m=$ 3, Point is $(2, 4)$
- Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$
$(1, 3)$ and $(5, 11)$.
$m = \frac{11 - 3}{5 - 1} = \frac{8}{4} =$ 2 - HOY VUX (Special Lines):
HOY: Horizontal line, 0 Slope, Equation is $\mathbf{Y} = \#$
VUX: Vertical line, Undefined Slope, Equation is $\mathbf{X} = \#$
Unit 4: Systems of Equations
Finding Solutions
- Visual Solution: The point $(x,y)$ where two lines CROSS.
- Example:
$y = 2x$ and $y = x + 1$
Graph them. They cross at $(1, 2)$. - Types of Solutions:
One Solution No Solution Infinite Solutions Lines Cross Once
$(x, y)$Parallel Lines
Same Slope
Different Y-intSame Line
On top of each other
Unit 5: Factoring & Quadratics
Factoring Strategies
- 1. GCF (Greatest Common Factor): ALWAYS check this first!
$4x^2 + 8x \rightarrow$ Pull out $4x \rightarrow$ $4x(x+2)$
- 2. Difference of Squares: Two terms subtracted. Both perfect squares.
$x^2 - 49 \rightarrow$ $(x+7)(x-7)$
- 3. Trinomials ($x^2 + bx + c$): Multiplies to C, Adds to B.
$x^2 + 7x + 12 \rightarrow$ (3 and 4) $\rightarrow$ $(x+3)(x+4)$
- 4. Slip & Slide ($ax^2 + bx + c$): When number in front $>1$.
$2x^2 + 7x + 3$
1. Multiply $a \cdot c$ ($2 \cdot 3 = 6$): $x^2 + 7x + 6$
2. Factor: $(x+6)(x+1)$
3. Divide by $a$ (2): $(x + \frac{6}{2})(x + \frac{1}{2})$
4. Simplify/Slide: $(x+3)(2x+1)$
Graph Transformations
Parent: $f(x)$
- Vertical Shift ($+k$): Moves Up/Down.
Ex: $x^2 + 3 \rightarrow$ Up 3 - Horizontal Shift ($x-h$): Inside is Opposite!
Ex: $(x-2)^2 \rightarrow$ Right 2.
Ex: $(x+5)^2 \rightarrow$ Left 5. - Reflection ($-f(x)$): Negative in front flips it over X-axis.
- Dilation ($a \cdot f(x)$):
If $a > 1$ (e.g., $3x^2$): Stretch (Skinny)
If $0 < a < 1$ (e.g., $0.5x^2$): Compression (Wide)
Unit 6: Statistics
Statistics & Data
- Mean: The Average. Add all numbers and divide by how many there are.
- Median: The Middle number. (Order least to greatest first).
- Mode: The number that appears the most.
- Range: The spread. Range = Max - Min.
- IQR (Interquartile Range): Middle 50%. Formula: $Q3 - Q1$.
Ex: $Q3 = 20, Q1 = 15$
$\rightarrow IQR = 20 - 15 = $ 5. - Z-Score: Number of standard deviations a value is from the mean.
Formula: $z = \frac{\text{Value} - \text{Mean}}{\text{Standard Deviation}}$Ex: Value=85, Mean=75, SD=5.
$z = \frac{85-75}{5} = \frac{10}{5} =$ 2. - Correlation ($r$): How close dots are to a line.
$r \approx 1$ or $-1$: Strong Correlation.
$r \approx 0$: Weak/No Correlation.
Hack: Curve of Best Fit (Regression)
Step 1: Add a Table ($+$) and type your points.
Step 2: Type the code for the shape that fits best:
- Linear ($y=mx+b$): Type y1 ~ mx1 + b
- Quadratic ($y=ax^2$): Type y1 ~ ax1^2 + bx1 + c
- Exponential ($y=ab^x$): Type y1 ~ ab^x1 (Check "Log Mode")
Step 3: Look for $r^2$. The closer to 1, the better the fit.
Hack: Statistics Codes
Step 1: Type data as a list: L = [5, 8, 12, 15]
Step 2: Use these codes:
- Mean (Average): mean(L)
- Median (Middle): median(L)
- Mode (Most): Find manually (look for repeats).
- Range (Max - Min): max(L) - min(L)
- Standard Deviation: stdev(L)
- IQR ($Q3 - Q1$): Find Q1/Q3 using stats(L).