Dividing Polynomials

The Long and Short of It

Today's Objectives

1. Review dividing polynomials by a monomial.

2. Master the universal method: Polynomial Long Division.

3. Learn the shortcut method: Synthetic Division.

Warm-Up: Exponent Rules

Remember the Quotient Rule: When dividing, you subtract exponents.

\(\frac{x^a}{x^b} = x^{a-b}\)

\(\frac{x^7}{x^3} = x^{7-3} = x^4\)

Part 1: Dividing by a Monomial

Split the problem into separate fractions and simplify each one.

\(\frac{8x^4 + 4x^3 - 2x^2}{2x^2}\)

becomes

\(\frac{8x^4}{2x^2} + \frac{4x^3}{2x^2} - \frac{2x^2}{2x^2}\)

\( = 4x^2 + 2x - 1\)

I Do: Dividing by a Monomial

Let's solve \(\frac{8x^4 + 4x^3 - 2x^2}{2x^2}\)

Step 1: Split the polynomial into separate fractions, with each term over the monomial divisor.

\(\frac{8x^4}{2x^2} + \frac{4x^3}{2x^2} - \frac{2x^2}{2x^2}\)

Step 2: Simplify each fraction. Divide the coefficients and subtract the exponents.

\(( \frac{8}{2}x^{4-2} ) + ( \frac{4}{2}x^{3-2} ) - ( \frac{2}{2}x^{2-2} )\)

Step 3: Write the final simplified expression.

\(4x^2 + 2x - 1\)

Part 2: The Universal Method

Polynomial Long Division works for any division problem. The process is the same as number division!

With Numbers...

25
4
100
-8
20
-20
0

With Polynomials...

?
\(x+2\)
\(x^2+7x+10\)

Divide, Multiply, Subtract, Bring Down

I Do: Long Division

Let's solve \( (x^2 + 7x + 10) \div (x+2) \)

\(x+5\)
\(x+2\)
\(x^2 + 7x + 10\)
\(-(x^2 + 2x)\)
\(5x + 10\)
\(-(5x + 10)\)
\(0\)

Divide \(x^2\) by \(x\) to get \(x\).

Multiply \(x(x+2)\) to get \(x^2+2x\).

Subtract and Bring Down the 10.

Repeat: Divide \(5x\) by \(x\) to get 5.

Multiply \(5(x+2)\) and subtract.

Answer: \(x+5\)

Part 3: The Shortcut

Synthetic Division is faster, but only works when the divisor is \( (x-k) \) or \( (x+k) \).

CAN Use Synthetic

\((x^2+2x-1) \div (x-3)\)

\((3x^3-5) \div (x+1)\)

CANNOT Use Synthetic

\((x^3+1) \div (x^2+1)\)

\((2x^2-x-1) \div (3x-5)\)

I Do: Synthetic Division

Let's solve \( (x^2 + 7x + 10) \div (x+2) \)

-2
1710
 
 -2-10
 
150

Set up: Use -2 from \((x+2)\) and the coefficients.

Bring down the first coefficient (1).

Multiply & Add: \(-2 \times 1 = -2\). Then \(7 + (-2) = 5\).

Multiply & Add: \(-2 \times 5 = -10\). Then \(10 + (-10) = 0\).

⑤ The result is \(1x+5\) with a remainder of 0.

Answer: \(x+5\)

Side-by-Side Comparison

Solving \((2x^3 - 9x^2 + 10x - 7) \div (x-3)\)

Long Division

\(2x^2 - 3x + 1\)
\(x-3\)
\(2x^3 - 9x^2 + 10x - 7\)
\(-(2x^3 - 6x^2)\)
\(-3x^2 + 10x\)
\(-(-3x^2 + 9x)\)
\(x - 7\)
\(-(x - 3)\)
\(-4\)

Synthetic Division

3
2-910-7
 6-93
 
2-31-4

Answer: \(2x^2 - 3x + 1 - \frac{4}{x-3}\)

You Do: Practice Time!

Choose the best method for each. Good luck!

Problem 1

\((k^2 - 7k + 10) \div (k-5)\)

\(k-2\)

Problem 2

\((2x^2 + 10x + 8) \div (x+4)\)

\(2x+2\)

Exit Ticket

Simplify the following expression using your preferred method:

\((v^3 + 8v^2 + 7v) \div (v+7)\)

The answer is \(v^2+v\)