Name: _________________________
Date: __________________________
1. \((5x^2 + 3x - 1) + (2x^2 - x + 4)\)
\(7x^2 + 2x + 3\)
2. \((9y^3 - 2y) - (y^3 + 5y - 7)\)
\(8y^3 - 7y + 7\)
3. \((a^2 - 10) + (4a^2 + 3a)\)
\(5a^2 + 3a - 10\)
4. \((7k+4) - (8k+1)\)
\(-k + 3\)
5. \((6m^3 + 2m) + (m^3 - 7m + 1)\)
\(7m^3 - 5m + 1\)
6. \((3x^2 - 4x) - (5x^2 - 2x)\)
\(-2x^2 - 2x\)
7. \((12n^2 + n - 8) - (4n^2 - 3n - 5)\)
\(8n^2 + 4n - 3\)
8. Add: \((x^3 + x^2)\) and \((2x^3 - 4x^2)\)
\(3x^3 - 3x^2\)
1. \((x + 7)(x + 5)\)
\(x^2 + 12x + 35\)
2. \((n - 4)(n - 2)\)
\(n^2 - 6n + 8\)
3. \((3y + 1)(y - 6)\)
\(3y^2 - 17y - 6\)
4. \((x + 3)(x^2 + 2x - 5)\)
\(x^3 + 5x^2 + x - 15\)
5. \((2k - 5)(k + 4)\)
\(2k^2 + 3k - 20\)
6. \((x - 1)(x + 1)\)
\(x^2 - 1\)
7. \((4p + 3)^2\)
\(16p^2 + 24p + 9\)
8. \((m - 2)(m^2 - 4m + 3)\)
\(m^3 - 6m^2 + 11m - 6\)
1. \(9x + 21\)
\(3(3x + 7)\)
2. \(10y^2 - 15y\)
\(5y(2y - 3)\)
3. \(8a^3 + 4a^2\)
\(4a^2(2a + 1)\)
4. \(6k^3 - 18k^2 + 12k\)
\(6k(k^2 - 3k + 2)\)
5. \(18m^2 - 6m\)
\(6m(3m - 1)\)
6. \(7x^3 + 21x^2\)
\(7x^2(x + 3)\)
7. \(50p^5 - 20p^3\)
\(10p^3(5p^2 - 2)\)
8. \(x^4y + x^3y^2\)
\(x^3y(x + y)\)
1. \(x^2 + 10x + 21\)
\((x+7)(x+3)\)
2. \(y^2 - 11y + 24\)
\((y-8)(y-3)\)
3. \(n^2 + 4n - 32\)
\((n+8)(n-4)\)
4. \(k^2 - 5k - 36\)
\((k-9)(k+4)\)
5. \(a^2 + 12a + 27\)
\((a+3)(a+9)\)
6. \(b^2 - 6b + 9\)
\((b-3)^2\)
7. \(c^2 + c - 20\)
\((c+5)(c-4)\)
8. \(d^2 - 3d - 40\)
\((d-8)(d+5)\)
1. \(2x^2 + 13x + 15\)
\((2x+3)(x+5)\)
2. \(3y^2 - 17y + 10\)
\((3y-2)(y-5)\)
3. \(5n^2 + 7n - 6\)
\((5n-3)(n+2)\)
4. \(4k^2 - 15k - 4\)
\((4k+1)(k-4)\)
5. \(7x^2 + 22x + 3\)
\((7x+1)(x+3)\)
6. \(6y^2 - 19y + 15\)
\((2y-3)(3y-5)\)
7. \(2n^2 + 5n - 12\)
\((2n-3)(n+4)\)
8. \(8k^2 - 10k - 3\)
\((4k+1)(2k-3)\)
1. \(\frac{18x^4 + 27x^2}{9x}\)
\(2x^3 + 3x\)
2. \((x^2 + 8x + 15) \div (x+3)\)
\(x+5\)
3. \(\frac{20a^5 - 5a^3 + 10a^2}{5a^2}\)
\(4a^3 - a + 2\)
4. \((k^2 - 9k + 14) \div (k-7)\)
\(k-2\)
5. \(\frac{14y^5 - 35y^3}{7y^2}\)
\(2y^3 - 5y\)
6. \((x^2 - 4x - 45) \div (x-9)\)
\(x+5\)
7. \(\frac{8m^3+16m^2-24m}{8m}\)
\(m^2 + 2m - 3\)
8. \((2n^2 + 13n + 15) \div (n+5)\)
\(2n+3\)