Unit 3, Day 1: Simplifying Radicals

Simplifying Square & Cube Roots

Algebra 1 - Unit 3, Day 1

Today's Objective

To simplify radical expressions, including square roots and cube roots of numbers and variables.

Do Now: Find the Missing Number!

\( 3 \times 3 = ? \)

1.    \( 3 \times 3 = \)

\( ? \times ? = 25 \)   (use the same number)

2.    \( \times \) \( = 25 \)

\( 10 \times 10 = ? \)

3.    \( 10 \times 10 = \)

\( ? \times ? = 81 \)   (use the same number)

4.    \( \times \) \( = 81 \)

Brain Break: Perfect Roots

Perfect Squares

\(2^2 = 4\)

\(3^2 = 9\)

\(4^2 = 16\)

\(5^2 = 25\)

\(6^2 = 36\)

\(7^2 = 49\)

\(8^2 = 64\)

\(9^2 = 81\)

\(10^2 = 100\)

\(12^2 = 144\)

Perfect Cubes

\(2^3 = 8\)

\(3^3 = 27\)

\(4^3 = 64\)

\(5^3 = 125\)

The Big Idea

To simplify a radical, we "pull out" the largest perfect root factor from the radicand.

\(\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\)

Practice: Square Roots

I Do

\(\sqrt{72}\)

\(\sqrt{36 \cdot 2}\)

\(\sqrt{36} \cdot \sqrt{2}\)

\(6\sqrt{2}\)

We Do

\(\sqrt{50}\)

\(\sqrt{25 \cdot 2}\)

\(\sqrt{25} \cdot \sqrt{2}\)

\(5\sqrt{2}\)

You Do

\(\sqrt{98}\)

\(\sqrt{49 \cdot 2}\)

\(\sqrt{49} \cdot \sqrt{2}\)

\(7\sqrt{2}\)

I Do: \(\sqrt{72}\) = 6\(\sqrt{2}\)

We Do: \(\sqrt{50}\) =

You Do: \(\sqrt{98}\) =

Practice: Cube Roots

I Do

\(\sqrt[3]{54}\)

\(\sqrt[3]{27 \cdot 2}\)

\(\sqrt[3]{27} \cdot \sqrt[3]{2}\)

\(3\sqrt[3]{2}\)

We Do

\(\sqrt[3]{16}\)

\(\sqrt[3]{8 \cdot 2}\)

\(\sqrt[3]{8} \cdot \sqrt[3]{2}\)

\(2\sqrt[3]{2}\)

You Do

\(\sqrt[3]{250}\)

\(\sqrt[3]{125 \cdot 2}\)

\(\sqrt[3]{125} \cdot \sqrt[3]{2}\)

\(5\sqrt[3]{2}\)

I Do: \(\sqrt[3]{54}\) = 3\(\sqrt[3]{2}\)

We Do: \(\sqrt[3]{16}\) =

You Do: \(\sqrt[3]{250}\) =

Independent Practice

1

\(\sqrt{20}\)

\(2\sqrt{5}\)

1. \(\sqrt{20}\) =
2

\(\sqrt[3]{40}\)

\(2\sqrt[3]{5}\)

2. \(\sqrt[3]{40}\) =
3

\(\sqrt{180}\)

\(6\sqrt{5}\)

3. \(\sqrt{180}\) =
4

\(5\sqrt{24}\)

\(10\sqrt{6}\)

4. \(5\sqrt{24}\) =

Exit Ticket

Simplify the following expression:

\(\sqrt{125}\)

Answer: \(5\sqrt{5}\)

\(\sqrt{125}\) =

Day 1 Summary