Unit 3, Day 2: Operations with Radicals

Adding, Subtracting, & Multiplying Radicals

Algebra 1 - Unit 3, Day 2

Today's Objective

To perform addition, subtraction, and multiplication on radical expressions by combining like radicals and using the distributive property.

Do Now: Review & Connect

Simplify each expression.

\( 3x + 5x = ? \)

1.    \( 3x + 5x = \)

\( 10y - 4y = ? \)

2.    \( 10y - 4y = \)

\( \sqrt{18} = ? \)

3.    \( \sqrt{18} = \)

The Big Idea: Like Radicals

You can only add or subtract radicals that have the exact same root and radicand.

Think of them like "like terms":

\(3x + 5x = 8x\)

\(3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}\)

Sometimes you must simplify first to find like radicals!

Practice: Adding & Subtracting

I Do

\(3\sqrt{5} + 6\sqrt{5}\)

\((3+6)\sqrt{5}\)

\(9\sqrt{5}\)

We Do

\(10\sqrt{7} - 2\sqrt{7}\)

\((10-2)\sqrt{7}\)

\(8\sqrt{7}\)

You Do

\(-\sqrt{10} + 5\sqrt{10}\)

\((-1+5)\sqrt{10}\)

\(4\sqrt{10}\)

I Do: \(3\sqrt{5} + 6\sqrt{5}\) = 9\(\sqrt{5}\)

We Do: \(10\sqrt{7} - 2\sqrt{7}\) =

You Do: \(-\sqrt{10} + 5\sqrt{10}\) =

Practice: Simplify First!

I Do

\(\sqrt{12} + \sqrt{75}\)

\(\sqrt{4 \cdot 3} + \sqrt{25 \cdot 3}\)

\(2\sqrt{3} + 5\sqrt{3}\)

\(7\sqrt{3}\)

We Do

\(\sqrt{50} - \sqrt{8}\)

\(\sqrt{25 \cdot 2} - \sqrt{4 \cdot 2}\)

\(5\sqrt{2} - 2\sqrt{2}\)

\(3\sqrt{2}\)

I Do: \(\sqrt{12} + \sqrt{75}\) = 7\(\sqrt{3}\)

We Do: \(\sqrt{50} - \sqrt{8}\) =

Multiplying Radicals

To multiply radicals, multiply the coefficients together and the radicands together.

\(a\sqrt{b} \cdot c\sqrt{d} = (a \cdot c)\sqrt{b \cdot d}\)

Always simplify the result!

Practice: Multiplying

I Do

\(\sqrt{6} \cdot \sqrt{3}\)

\(\sqrt{18}\)

\(\sqrt{9 \cdot 2}\)

\(3\sqrt{2}\)

We Do

\(2\sqrt{5} \cdot 3\sqrt{10}\)

\((2 \cdot 3)\sqrt{5 \cdot 10}\)

\(6\sqrt{50}\)

\(6\sqrt{25 \cdot 2} \rightarrow 6 \cdot 5\sqrt{2}\)

\(30\sqrt{2}\)

You Do

\(\sqrt{2}(\sqrt{8} + \sqrt{3})\)

\(\sqrt{16} + \sqrt{6}\)

\(4 + \sqrt{6}\)

I Do: \(\sqrt{6} \cdot \sqrt{3}\) = 3\(\sqrt{2}\)

We Do: \(2\sqrt{5} \cdot 3\sqrt{10}\) =

You Do: \(\sqrt{2}(\sqrt{8} + \sqrt{3})\) =

Independent Practice

Complete the following problems. Start with the green section!

Simplify:

1.   \(8\sqrt{3} - 2\sqrt{3}\)

2.   \(\sqrt{5} \cdot \sqrt{7}\)

Simplify:

3.   \(4\sqrt{2} + \sqrt{32}\)

4.   \(5\sqrt{3} \cdot \sqrt{6}\)

Simplify:

5.   \(3\sqrt{8} + 2\sqrt{18} - \sqrt{50}\)

Independent Practice

1. \(8\sqrt{3} - 2\sqrt{3}\) =

2. \(\sqrt{5} \cdot \sqrt{7}\) =

3. \(4\sqrt{2} + \sqrt{32}\) =

4. \(5\sqrt{3} \cdot \sqrt{6}\) =

5. \(3\sqrt{8} + 2\sqrt{18} - \sqrt{50}\) =

Exit Ticket

Simplify the following expression completely:

\(3\sqrt{20} - \sqrt{5}\)

\(3\sqrt{4 \cdot 5} - \sqrt{5}\)

\(3 \cdot 2\sqrt{5} - \sqrt{5}\)

\(6\sqrt{5} - \sqrt{5}\)

Answer: \(5\sqrt{5}\)

\(3\sqrt{20} - \sqrt{5}\) =