Unit 3, Day 3: Radicals and Fractional Exponents

Radicals as Fractional Exponents

Algebra 1 - Unit 3, Day 3

Today's Objective

To understand and write radicals using fractional exponents, and to evaluate expressions in both forms.

Do Now: Exponents & Roots

Simplify each expression.

\( (x^3)^2 = ? \)

1.    \( (x^3)^2 = \)

\( \sqrt{49} = ? \)

2.    \( \sqrt{49} = \)

\( \sqrt[3]{8} = ? \)

3.    \( \sqrt[3]{8} = \)

The Big Idea: Power over Root

A rational (fraction) exponent is just another way to write a radical.

\( b^{\frac{m}{n}} = (\sqrt[n]{b})^m \)

Remember: The numerator (m) is the Power. The denominator (n) is the Root.

Practice: Exponent to Radical Form

I Do

\( x^{\frac{2}{3}} \)

\( (\sqrt[3]{x})^2 \)

We Do

\( 5^{\frac{1}{2}} \)

\( \sqrt{5} \)

You Do

\( a^{\frac{4}{5}} \)

\( (\sqrt[5]{a})^4 \)

I Do: \( x^{\frac{2}{3}} \) = \( (\sqrt[3]{x})^2 \)

We Do: \( 5^{\frac{1}{2}} \) =

You Do: \( a^{\frac{4}{5}} \) =

Practice: Radical to Exponent Form

I Do

\( (\sqrt[4]{y})^3 \)

\( y^{\frac{3}{4}} \)

We Do

\( \sqrt{6} \)

\( 6^{\frac{1}{2}} \)

You Do

\( (\sqrt[5]{z})^2 \)

\( z^{\frac{2}{5}} \)

I Do: \( (\sqrt[4]{y})^3 \) = \( y^{\frac{3}{4}} \)

We Do: \( \sqrt{6} \) =

You Do: \( (\sqrt[5]{z})^2 \) =

Practice: Evaluating Expressions

I Do

\( 8^{\frac{2}{3}} \)

\( (\sqrt[3]{8})^2 \)

\( (2)^2 \)

\( 4 \)

We Do

\( 25^{\frac{3}{2}} \)

\( (\sqrt{25})^3 \)

\( (5)^3 \)

\( 125 \)

You Do

\( 16^{\frac{1}{4}} \)

\( \sqrt[4]{16} \)

\( 2 \)

I Do: \( 8^{\frac{2}{3}} \) = 4

We Do: \( 25^{\frac{3}{2}} \) =

You Do: \( 16^{\frac{1}{4}} \) =

Independent Practice

Complete the following problems. Start with the green section!

Rewrite or evaluate:

1. Rewrite \( x^{\frac{1}{4}} \) in radical form.

2. Evaluate \( 9^{\frac{1}{2}} \)

Rewrite or evaluate:

3. Rewrite \( (\sqrt[5]{y})^2 \) in exponent form.

4. Evaluate \( 27^{\frac{2}{3}} \)

Rewrite or evaluate:

5. Evaluate \( 32^{\frac{3}{5}} \)

Independent Practice

1. Rewrite \( x^{\frac{1}{4}} \) in radical form:

2. Evaluate \( 9^{\frac{1}{2}} \):

3. Rewrite \( (\sqrt[5]{y})^2 \) in exponent form:

4. Evaluate \( 27^{\frac{2}{3}} \):

5. Evaluate \( 32^{\frac{3}{5}} \):

Exit Ticket

Evaluate the following expression completely:

\( 64^{\frac{2}{3}} \)

\( (\sqrt[3]{64})^2 \)

\( (4)^2 \)

Answer: \( 16 \)

\( 64^{\frac{2}{3}} \) =