Unit 3, Day 4: Rationalizing the Denominator

Rationalizing the Denominator

Algebra 1 - Unit 3, Day 4

Today's Objective

To write radical expressions in simplest form by removing radicals from the denominator.

Do Now: Radical Multiplication

Simplify each expression.

\( \sqrt{5} \cdot \sqrt{5} = ? \)

1.    \( \sqrt{5} \cdot \sqrt{5} = \)

\( \sqrt{3} \cdot \sqrt{6} = ? \)

2.    \( \sqrt{3} \cdot \sqrt{6} = \)

\( (2\sqrt{7}) \cdot \sqrt{7} = ? \)

3.    \( (2\sqrt{7}) \cdot \sqrt{7} = \)

How to Rationalize the Denominator

The rule is simple: You are not allowed to leave a radical in the denominator. Here's how we fix it, step-by-step:

1

Identify the square root in the denominator.

2

Multiply both the top and the bottom of the fraction by that same square root.

3

Simplify. The denominator should now be a rational number (no more root!).

Practice: Rationalizing

I Do

\( \frac{2}{\sqrt{5}} \)

\( \frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \)

\( \frac{2\sqrt{5}}{5} \)

We Do

\( \frac{1}{\sqrt{3}} \)

\( \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \)

\( \frac{\sqrt{3}}{3} \)

You Do

\( \frac{7}{\sqrt{2}} \)

\( \frac{7}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \)

\( \frac{7\sqrt{2}}{2} \)

I Do: \( \frac{2}{\sqrt{5}} \) = \( \frac{2\sqrt{5}}{5} \)

We Do: \( \frac{1}{\sqrt{3}} \) =

You Do: \( \frac{7}{\sqrt{2}} \) =

Practice: Simplify, then Rationalize

I Do

\( \frac{5}{\sqrt{12}} \)

\( \frac{5}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \)

\( \frac{5\sqrt{3}}{2 \cdot 3} \)

\( \frac{5\sqrt{3}}{6} \)

We Do

\( \frac{6}{\sqrt{8}} \)

\( \frac{6}{2\sqrt{2}} = \frac{3}{\sqrt{2}} \)

\( \frac{3}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \)

\( \frac{3\sqrt{2}}{2} \)

You Do

\( \sqrt{\frac{7}{20}} \)

\( \frac{\sqrt{7}}{\sqrt{20}} = \frac{\sqrt{7}}{2\sqrt{5}} \)

\( \frac{\sqrt{7}}{2\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \)

\( \frac{\sqrt{35}}{10} \)

I Do: \( \frac{5}{\sqrt{12}} \) = \( \frac{5\sqrt{3}}{6} \)

We Do: \( \frac{6}{\sqrt{8}} \) =

You Do: \( \sqrt{\frac{7}{20}} \) =

Independent Practice

Simplify each expression completely.

Level 1 Problems:

1. \( \frac{1}{\sqrt{7}} \)

2. \( \frac{10}{\sqrt{5}} \)

Level 2 Problems:

3. \( \frac{2}{\sqrt{18}} \)

4. \( \sqrt{\frac{3}{5}} \)

Level 3 Problem:

5. \( \frac{3\sqrt{2}}{\sqrt{6}} \)

Independent Practice

1. \( \frac{1}{\sqrt{7}} \) =

2. \( \frac{10}{\sqrt{5}} \) =

3. \( \frac{2}{\sqrt{18}} \) =

4. \( \sqrt{\frac{3}{5}} \) =

5. \( \frac{3\sqrt{2}}{\sqrt{6}} \) =

Exit Ticket

Simplify the expression completely:

\( \frac{7}{\sqrt{28}} \)

\( \frac{7}{\sqrt{4 \cdot 7}} = \frac{7}{2\sqrt{7}} \)

\( \frac{7}{2\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} = \frac{7\sqrt{7}}{2 \cdot 7} = \frac{7\sqrt{7}}{14} \)

Answer: \( \frac{\sqrt{7}}{2} \)

\( \frac{7}{\sqrt{28}} \) =