Day 4 Worksheet: Rationalizing the Denominator

Rationalizing the Denominator

Name: _________________________

Date: __________________________

Worked-Out Examples

Example 1: Basic

\( \frac{2}{\sqrt{5}} \)

\(\rightarrow \frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}\)

\(\rightarrow \frac{2\sqrt{5}}{5}\)

Example 2: Simplify First

\( \frac{5}{\sqrt{12}} \)

\(\rightarrow \frac{5}{\sqrt{4 \cdot 3}} = \frac{5}{2\sqrt{3}}\)

\(\rightarrow \frac{5}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{2 \cdot 3}\)

\(\rightarrow \frac{5\sqrt{3}}{6}\)

Practice Problems

Simplify each expression by rationalizing the denominator.

1. \( \frac{1}{\sqrt{7}} \)

2. \( \frac{6}{\sqrt{3}} \)

3. \( \frac{15}{\sqrt{5}} \)

4. \( \sqrt{\frac{2}{3}} \)

5. \( \frac{1}{\sqrt{8}} \)

6. \( \frac{12}{\sqrt{18}} \)

7. \( \frac{5}{\sqrt{50}} \)

8. \( \frac{\sqrt{3}}{\sqrt{6}} \)

9. \( \frac{4}{3\sqrt{2}} \)

10. \( \sqrt{\frac{7}{12}} \)

11. \( \frac{3\sqrt{5}}{\sqrt{2}} \)

12. \( \frac{2\sqrt{5}}{\sqrt{80}} \)