Unit 3 "How-To" Guide: Radical Expressions
Reference Sheet
Day 1: How to Simplify Radicals
- Find the largest perfect square (or cube) that divides into the number under the radical.
- Rewrite the radical as a product of two radicals.
- Take the square root (or cube root) of the perfect part. This number goes outside.
- Leave the other number under the radical.
Day 2: How to Add, Subtract & Multiply
Add/Subtract:
- Simplify all radicals first.
- Combine "like radicals" (same number inside) by adding/subtracting the coefficients (numbers outside).
Multiply:
- Multiply the coefficients.
- Multiply the numbers under the radical.
- Simplify the final radical.
Day 3: Radicals & Fractional Exponents
\( \sqrt[n]{x^m} = x^{m/n} \)
- The index of the root is the denominator of the fraction.
- The power on the number is the numerator.
Day 4: How to Rationalize the Denominator
- Identify the radical in the denominator.
- Multiply the top and bottom of the fraction by that same radical.
- Simplify. The denominator should no longer have a radical.
Worked-Out Examples
Day 1: Simplifying Radicals
Simplify: \( \sqrt{72} \)
\(\rightarrow \sqrt{36 \cdot 2}\)
\(\rightarrow \sqrt{36} \cdot \sqrt{2}\)
\(\rightarrow 6\sqrt{2}\)
Simplify: \( \sqrt[3]{54} \)
\(\rightarrow \sqrt[3]{27 \cdot 2}\)
\(\rightarrow \sqrt[3]{27} \cdot \sqrt[3]{2}\)
\(\rightarrow 3\sqrt[3]{2}\)
Day 2: Operations with Radicals
Subtract: \( \sqrt{50} - \sqrt{8} \)
\(\rightarrow \sqrt{25 \cdot 2} - \sqrt{4 \cdot 2}\)
\(\rightarrow 5\sqrt{2} - 2\sqrt{2}\)
\(\rightarrow 3\sqrt{2}\)
Multiply: \( 3\sqrt{2} \cdot 4\sqrt{6} \)
\(\rightarrow (3 \cdot 4)\sqrt{2 \cdot 6} = 12\sqrt{12}\)
\(\rightarrow 12\sqrt{4 \cdot 3} = 12 \cdot 2\sqrt{3}\)
\(\rightarrow 24\sqrt{3}\)
Day 3: Radicals & Fractional Exponents
Radical to Exponent:
Convert \( \sqrt[3]{x^2} \) to exponential form.
\(\rightarrow x^{2/3}\)
Exponent to Radical:
Convert \( y^{3/4} \) to radical form.
\(\rightarrow \sqrt[4]{y^3}\)
Day 4: Rationalizing the Denominator
Example 1: Basic
\( \frac{2}{\sqrt{5}} \)
\(\rightarrow \frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}\)
\(\rightarrow \frac{2\sqrt{5}}{5}\)
Example 2: Simplify First
\( \frac{5}{\sqrt{12}} \)
\(\rightarrow \frac{5}{\sqrt{4 \cdot 3}} = \frac{5}{2\sqrt{3}}\)
\(\rightarrow \frac{5}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{2 \cdot 3}\)
\(\rightarrow \frac{5\sqrt{3}}{6}\)