Use the arrows or your keyboard to navigate the slides.
Day 4: Solving Problems
If \(m\angle4 = (x+20)^\circ\) and \(m\angle5 = (2x)^\circ\), what value of x makes the lines parallel?
If two parallel lines are cut by a transversal, the angle pairs are either CONGRUENT or SUPPLEMENTARY.
1. If \(m\angle2 = 60^\circ\), find \(m\angle7\). . Why?
2. If \(m\angle3 = 110^\circ\), find \(m\angle5\). . Why?
Given l || m, find the value of x.
Green: \(m\angle1 = 130^\circ\), \(m\angle8 = x^\circ\). x =
Yellow: \(m\angle2 = (5x - 10)^\circ\), \(m\angle6 = (3x + 20)^\circ\). x =
Red: \(m\angle4 = (x + 25)^\circ\), \(m\angle6 = (4x - 15)^\circ\). x =
Given l || m, first find x, then find the measure of angle 4.
\(m\angle2 = (3x+15)^\circ\), \(m\angle5 = (5x+5)^\circ\)
x =
m∠4 =