Unit: Parallel & Perpendicular Lines
Finds the length of a line segment between two points $(x_1, y_1)$ and $(x_2, y_2)$.
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
Finds the coordinates of the point exactly halfway between two points.
$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
Let's find the distance between point A(-2, 1) and B(4, 3).
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
A($\underset{x_1}{-2}$, $\underset{y_1}{1}$) and B($\underset{x_2}{4}$, $\underset{y_2}{3}$)
$d = \sqrt{(4 - (-2))^2 + (3 - 1)^2}$
$d = \sqrt{(6)^2 + (2)^2}$
$d = \sqrt{36 + 4}$
$d = \sqrt{40}$
$d \approx 6.32$ units
Let's find the midpoint of the segment with endpoints C(5, -2) and D(-1, 6).
$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
C($\underset{x_1}{5}$, $\underset{y_1}{-2}$) and D($\underset{x_2}{-1}$, $\underset{y_2}{6}$)
$M = \left(\frac{5 + (-1)}{2}, \frac{-2 + 6}{2}\right)$
$M = \left(\frac{4}{2}, \frac{4}{2}\right)$
$M = (2, 2)$
Find the distance between E(7, 1) and F(-1, 5).
$d = \sqrt{(\underline{\hspace{1.5cm}} - \underline{\hspace{1.5cm}})^2 + (\underline{\hspace{1.5cm}} - \underline{\hspace{1.5cm}})^2}$
$d = \sqrt{(\underline{\hspace{1.5cm}})^2 + (\underline{\hspace{1.5cm}})^2}$
$d = \sqrt{\underline{\hspace{1.5cm}} + \underline{\hspace{1.5cm}}}$
$d = \sqrt{\underline{\hspace{1.5cm}}}$
Find the midpoint of segment GH where G is (0, -4) and H is (3, 2).
$M = \left(\frac{\underline{\hspace{1.5cm}} + \underline{\hspace{1.5cm}}}{2}, \frac{\underline{\hspace{1.5cm}} + \underline{\hspace{1.5cm}}}{2}\right)$
$M = \left(\frac{\underline{\hspace{1.5cm}}}{2}, \frac{\underline{\hspace{1.5cm}}}{2}\right)$
$M = (\underline{\hspace{1.5cm}}, \underline{\hspace{1.5cm}})$
Solve the following problems on your own. Show your work.
What is the length of the segment connecting J(6, 8) and K(-3, 8)?
Find the midpoint of the segment with endpoints L(10, 3) and N(-4, -5).
Choose a level and complete the problems. Show all your work.
Show me what you learned! Answer the questions below.
1. Find the distance between P(-5, -2) and Q(3, 4).
2. Find the midpoint of the segment connecting R(9, -1) and S(-1, 5).
3. In your own words, when would you use the distance formula vs. the midpoint formula?